Vessel.comms

网站作者2年前KRPC1060

在kRPC中,comms 是一个用于获取和控制飞行器通信系统的接口。通过 comms 属性,你可以检查飞行器的信号强度、通信能力等参数。这在任务中保持与地面控制的通信非常重要,特别是在遥远的行星任务中。

功能和使用

  1. 获取通信系统状态comms 属性返回一个 Comms 对象,该对象包含飞行器的通信系统的各种参数。

import krpc

# 连接到kRPC服务器
conn = krpc.connect(name='Comms Example')
space_center = conn.space_center

# 获取当前活动飞行器
vessel = space_center.active_vessel

# 获取飞行器的通信系统接口
comms = vessel.comms

# 打印通信系统的参数
print(f"Signal strength: {comms.signal_strength * 100:.2f}%")
print(f"Signal delay: {comms.signal_delay} seconds")
print(f"Has connection: {comms.has_connection}")
print(f"Control path: {comms.control_path}")
``

示例解释

  1. 连接到kRPC服务器:使用 krpc.connect() 函数连接到 kRPC 服务器。

  2. 获取当前活动飞行器:通过 space_center.active_vessel 获取当前活动飞行器。

  3. 获取通信系统接口:通过 vessel.comms 属性获取飞行器的通信系统接口。

  4. 打印通信系统的参数:从 comms 对象中获取并打印信号强度、信号延迟、是否有连接和控制路径等信息。

常用通信属性

  • signal_strength:飞行器的信号强度,范围从0.0到1.0。

  • signal_delay:信号延迟,以秒为单位。

  • has_connection:布尔值,指示飞行器是否有与地面控制的连接。

  • control_path:一个字符串,表示信号路径上的节点。

应用场景

  • 任务监控:实时监控飞行器的通信状态,确保任务过程中与地面控制保持联系。

  • 自动化任务:在自动化任务中,使用通信系统参数可以决定任务的执行逻辑,例如在信号丢失时进入待机模式。

  • 远程操作:在进行遥远的行星任务时,确保通信系统的有效性,以便进行远程操作和控制。


相关文章

Flight.simulate_aerodynamic_force_at(body, position, velocity)

在kRPC中,Flight 类的 simulate_aerodynamic_force_at 方法用于模拟飞行器在特定位置和速度下的空气动力。这对于预先计算飞行器在不同条件下的空气动力反应非常有用。这...

Orbit.true_anomaly_at_ut(ut)

在kRPC中,Orbit 类的 true_anomaly_at_ut 方法用于计算飞行器在给定时间点(UT,Universal Time)的真近点角。这个方法返回一个浮点数,表示飞行器在指定时间点的真...

Flight.thrust_specific_fuel_consumption

在kRPC中,Flight 类的 thrust_specific_fuel_consumption 属性用于获取飞行器当前的推力比燃料消耗率(Thrust Specific Fuel Consumpt...

Orbit.time_to_periapsis

在kRPC中,Orbit 类的 time_to_periapsis 属性用于获取飞行器到达轨道近地点所需的时间。近地点是飞行器在轨道上离参考天体最近的点。这个属性返回一个浮点数,表示飞行器到达近地点的...

Flight.velocity

在kRPC中,Flight 类的 velocity 方法用于获取飞行器在指定参考系中的速度。这个方法返回一个三元素的元组,表示飞行器在参考系中的速度分量,以米每秒(m/s)为单位。import krp...

Control.activate_next_stage()

在kRPC中,activate_next_stage 方法用于激活飞行器的下一个阶段。该方法属于 Control 类,并返回一个包含 Vessel 对象的向量,这些对象是激活阶段过程中分离出来的新飞行...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。