Control.nodes

网站作者6个月前KRPC442

在kRPC中,Control 类提供了 nodes 属性,用于获取飞行器当前所有的航天节点(Maneuver Nodes)。这个属性返回一个包含 Node 对象的列表,每个 Node 对象表示一个航天节点。

功能和使用

属性

  • nodes:返回一个包含 Node 对象的列表,表示飞行器当前所有的航天节点。

import krpc

# 连接到kRPC服务器
conn = krpc.connect(name='Nodes Example')
space_center = conn.space_center

# 获取当前活跃飞行器
vessel = space_center.active_vessel

# 获取控制对象
control = vessel.control

# 获取当前所有航天节点
nodes = control.nodes

# 打印每个节点的信息
for node in nodes:
    print(f"Node at UT: {node.ut}, prograde: {node.prograde}, normal: {node.normal}, radial: {node.radial}")

示例解释

  1. 连接到kRPC服务器:使用 krpc.connect() 函数连接到 kRPC 服务器。

  2. 获取当前活跃飞行器:通过 space_center.active_vessel 获取当前活跃的飞行器对象。

  3. 获取控制对象:通过 vessel.control 获取控制对象。

  4. 获取当前所有航天节点:通过访问 control.nodes 属性来获取飞行器当前所有的航天节点,并将其存储在 nodes 列表中。

  5. 打印每个节点的信息:遍历 nodes 列表,打印每个航天节点的时间、顺行方向推力变化、法线方向推力变化和径向方向推力变化。

应用场景

  • 轨道调整:在飞行过程中,通过获取当前所有的航天节点,以便进行轨道调整和变轨。

  • 自动化任务:在自动化脚本中,根据需要获取和管理当前的航天节点,以确保任务顺利完成。

  • 调试和测试:在飞行器设计和测试过程中,使用航天节点接口进行精确的控制和调试。

相关方法和属性

  • Control 类的其他方法和属性:如 add_noderemove_nodesthrottlepitchyawrollsasrcsgearlightsbrakes 等,用于控制飞行器的各个方面。

  • Node:获取和设置航天节点的各种参数,如时间、推力变化等。


相关文章

Flight.anti_radial

在kRPC中,Flight 类的 anti_radial 属性用于获取飞行器相对于轨道参考系的径向向内向量。这个属性返回一个三元素的元组,表示飞行器在轨道参考系中的径向向内向量,以 (X, Y, Z)...

remove_nodes()

在kRPC中,Control 类提供了 remove_nodes 方法,用于移除飞行器当前的所有航天节点(Maneuver Nodes)。该方法不需要任何参数。功能和使用方法remove_nodes(...

Vessel.available_torque

在kRPC中,available_torque 属性用于获取飞行器当前所有控制部件能够提供的可用转矩(torque)。这个属性返回一个元组,表示飞行器在三个轴(X、Y、Z)上的最大和最小可用转矩。转矩...

CelestialBody.altitude_at_position(position, reference_frame)

在kRPC中,CelestialBody 类的 altitude_at_position 方法用于获取天体在指定位置的高度。这个方法返回一个浮点数,表示指定位置相对于天体表面的高度,以米(m)为单位。...

Control.forward

在kRPC中,Control 类提供了 forward 属性,用于获取或设置飞行器的前进值。这个属性返回一个浮点值,表示当前的前进控制输入。功能和使用属性forward:返回一个浮点值,表示飞行器的前...

CelestialBody.rotational_speed

在kRPC中,CelestialBody 类的 rotational_speed 属性用于获取天体表面赤道上的旋转速度。这个属性返回一个浮点数,表示天体赤道上旋转的线速度,以米每秒(m/s)为单位。功...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。